

HPC Workflows a' Comin'
CJ Newburn, HPC Lead for NV Compute SW
P3HPC Forum, Sep 2, 2020

Workloads: First there was simple HPC

One and done

3

Workflows: Then there were mashups - light, accurate, realtime

Complex inter-relationships of stages vs. one and done

Common interests for workflows

Relatively-new characteristics

- HPC practitioners are being presented with a new set work workloadflows
 - Mashup of HPC, data analytics, deep learning, visualization
 - Data + metadata
 - Common data representation and interoperability are key
 - Moving toward higher-level abstractions, reusable infrastructure
 - Projection of numerical data into consumable insight (vis) with automated action
 - Orchestration, management, containers
 - Monitoring for bottlenecks and continuous improvement
- Performance, portability, and productivity all have a part to play

Fully-integrated Al-assisted HPC simulation

Enables new science in areas like CoViD-19

- DeepDriveMD: protein folding, docking
- ATOM: molecular design tools
- ProtTrans: computational biology ~ natural language processing (<u>link</u>)
- Physics-inspired DL to characterize black hole mergers (<u>link</u>)
- ECMWF: Weather modeling

ATOM design tools will be applied to propose new improved molecular structures

HPC at the Edge usage models

HPC at the Edge: realtime compute at edge \rightarrow lower bandwidth, higher quality data back to DC

- Light sources at LBNL, BNL, ANL, SLAC
- ORNL: CNMS microscopy, FedSci, MANTiD, Manufacturing Design Facility
- VA Tech: Microtomography
- Health: NVIDIA Clara

Courtesy of Hari Krishnan and Alex Hexemer, LBNL.ALS

scattering, micro-diffraction, hybrid.

Multiple light sources do similar operations

Toward shared DoE infrastructure

Build once, use everywhere

Data collection

Data sanitization

Noise reduction, crop padding, normalization Visualization

Reconstruction segmentation/registration

Toward commonality and integration on the data plane

A Systemic Approach to Facilitating Reproducibility via Federated, End-to-End Data Management Dale Stansberry, Suhas Somnath, Gregory Shutt, and Mallikarjun Shankar @ ORNL, Advanced Data and Workflows Group

Inadequate metadata for Al

Containers

Orchestration/security

Higher-level APIs

Edge-to-exascale workflow (control, interactive steering, design of experiment)

Data lifecycle management

Courtesy of Rama Vasudevan, ORNL.CNMS

FedSci: SW Framework for Federated Science Instruments

T. Naughton, S. Hitefield, L. Sorrillo, N. Rao, J. Kohl, W. Elwasif, J-C. Bilheux, H. Bilheux, S. Boehm, J. Kincl, S. Sen and N. Imam @ ORNL

Perf: device → HPC resources

Portability: OSS toolkit, many sites

Productivity: time to discovery

Abstraction: plugins, Python APIs

Mashup, sched/orch, interop, vis

MANTID @ ORNL

"Performance improvements on SNS and HFIR instrument data reduction workflows using Mantid" William F Godoy, Pete Peterson, Steven Hahn, John Hetrick, Jay Billings @ ORNL

Perf: focused on IO Mashup of HPC, analytics, DL, vis

Common data rep, interop

Higher-level abstractions, building blks

Monitoring

Scientific Campaign Data Lifecycle

CADES or OLCF

Micro-tomography @ VA Tech

Toward Real-Time Analysis of Synchrotron Micro-Tomography Data: Accelerating Experimental Workflows with AI and HPC: J McClure, J Yin, R Armstrong, K Maheshwari, S Wilkinson, L Vlcek, Y Wang, M Berrill, M Rivers

Perf: data bottleneck

Mashup, vis, metadata

New workloads → workflows for a new era

Mash-up of HPC, DL, DA, Vis in accelerated systems vs. just CPUs

Beginning to explore rich interaction among stages

Interaction among stages: Sensors+HPC+DA+Vis

Combine sensor data with simulation, analyze, visualize

Courtesy Thorsten Kurth. Exploratory effort with ECMWF

Interaction among stages: Sensors+HPC+DL/ML+DA+Vis

Augment model training with sensor data that corrects simulation

Interaction among stages: Sensors+HPC+DL/ML+DA+Vis+Ctrl

Use of model to shorten feedback loop: correct setup, increase sampling of what's unexpected

Common building blocks in various stages

Build up perf-tuned, portable/HLL building blocks to enhance productivity

Where should the action be?

Compute, storage, learning/inference

- Near the edge
 - Create higher-quality data to send to datacenter at lower bandwidth
 - Data may have locality at the edge, e.g. industrial control
 - Local learning, local activities related to federated learning
 - Inference, and an increasing fraction of training
- Fungible either DC or edge (portable)
 - Computing platform is common between sensors and base station/datacenter
- In the base station or datacenter (if security allows)
 - Very-large-scale strong scaling, not power constrained
 - Persistent, longitudinal data
 - Complex learning, in service of transfer learning
 - Human-experimental interaction
 - Hub for federated learning

Converting numerical data into insightful projection

Lossy but discriminant compression/distillation of data that enables targeted action

Trends

- Sensor fusion of multi-modal sensor input, e.g. pressure, vibration, IR, temperature
- Make data more accessible to humans or to AI networks
 - · Augmented input: Fake info to support perception, e.g. color, lens flare
 - Simulation results comparisons become "observables"

Challenges

- Interoperability between data representations, tool diversity
- Life-like cinema comes to science: Omniverse, Paraview, Houdini; auto-driving
- Where can you "in situ" it?
 - Edge non-human agent is automated to reduce latency, effort
 - Datacenter refined human perception: insight, education, marketing/Hollywood

Orchestration, monitoring, and resilience

- Workload: run 'til it's done
- Workflow: tune during the run
- Needs
 - Observability/monitoring, (health/effectiveness) analysis, vis
 - During the run, from cloud adaptively resched, re-orchestrate
 - Recover from transient and permanent failures, disconnection
 - Easy, secure, automated update
 - K8s device plugins, GPU operators
- Reference: <u>EGX</u>
 - "Orchestration for the Edge" at ISC20.HPCW

Performance, portability, productivity

Monitoring and continuous improvement of all of these

Performance

- Data movement, access, management Magnumio for multi-GPU, multi-node
- Spanning nodes, processes, containers best practices
- Representations <u>numpy</u>/<u>cupy</u> arrays, <u>Arrow</u>, <u>USD</u>, <u>pyUSID</u>, <u>MsgPack</u>, <u>DICOM</u>, <u>NIfTI</u>

Portability

- CPU and GPU versions of building blocks
- Relocatable work: near the edge or back in the data center

Productivity

Building blocks and higher-level abstractions, C++ and Python

Call to action

An invitation to collaborate as we begin a new era

- Workflows vs. workloads: mashups, interoperability, data representation, metadata, orchestration/containers/monitoring, abstractions, projections/vis
- Performance: Data movement, access, management, representation
- Portability: CPU/GPU, shift work/data/vis to where it makes most sense
- Productivity: increasing communal pool of building blocks on common platform
- Share workflows, help find commonality, build platform-level infrastructure

